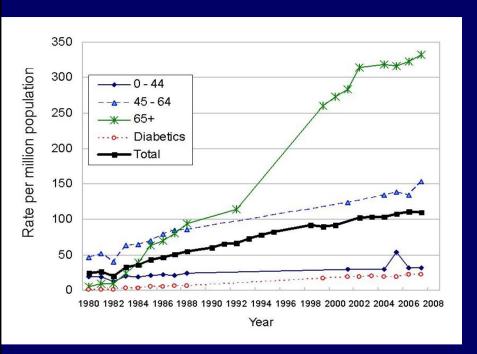
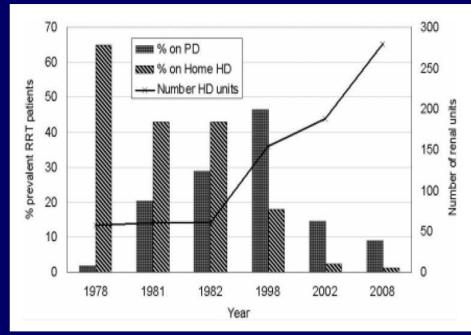


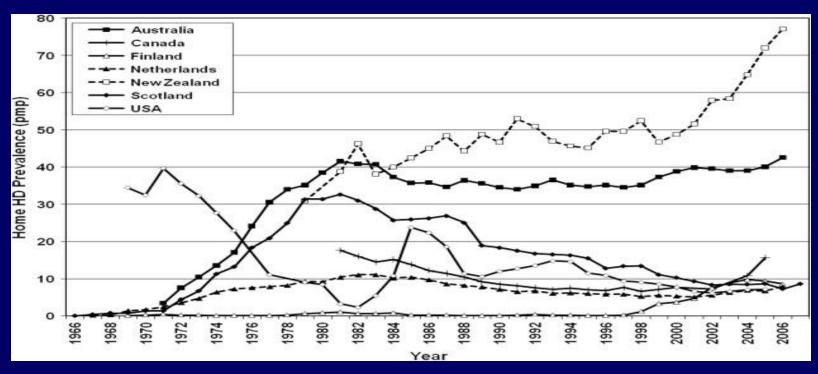
Present and Future in Home Dialysis – Global Perspective

Christopher T Chan MD FRCPC
Director – Division of Nephrology – University Health Network
R Fraser Elliott Chair In Home Dialysis
Professor of Medicine – University of Toronto




Objectives

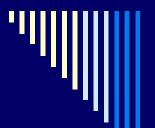
- To discuss and review the emerging trends in home dialysis
 - Practice
 - Research
 - Quality


The Change of Dialysis Practice

The prevalence of HHD in several countries from 1966 to 2006

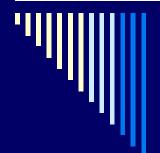
. Data are expressed as pmp.

Hypothesis: The "unphysiology" of dialysis


"...Approximation of normal physiology should reflect the best clinical outcome..."

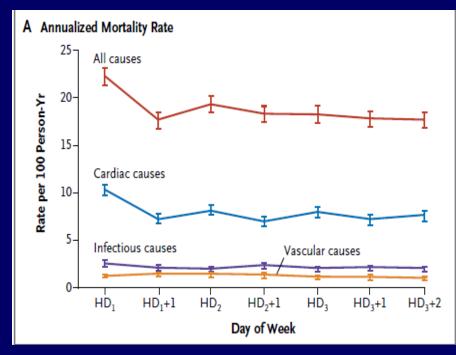
Typical Treatment Parameters During Frequent Hemodialysis: <u>Dose is Different!</u>

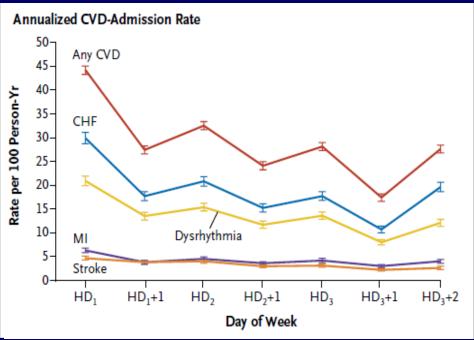
	Conventional HD	Short Daily HD	Nocturnal HD	NxStage HD
Treatments/wk	3	5-6	5-6	6
Treatment time (hrs)	3-4	2-3	6-8	2.5-3.5
Blood Flow Rate (ml/min)	200-400	400	200-300	400
Dialysate Flow Rate (ml/min)	500-800	500-800	200-350	130

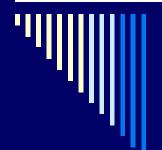


Frequent HD: mortality studies

Observations:

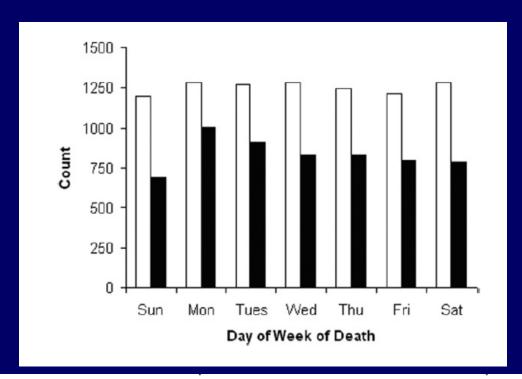

- Overall suggests frequent HD better than incenter HD
- BUT estimate of clinical benefit varies
- Technique survival is different


Study	Countries and	Study po	opulation	Relative mortality
	duration of follow-up	Intensive HHD	In-centre CHD	in HHD population
Johansen et <i>al</i> . (2009) ¹⁶	USA, 3 years	94 patients receiving home NHD (mean 5.7 days per week)	940 patients in USRDS	HR 0.36 (95% CI 0.22–0.61); <i>P</i> <0.001
Johansen et <i>al.</i> (2009) ¹⁶	USA, 3 years	43 patients receiving SDHD (mean 5.4 days per week)	430 patients in USRDS	HR 0.64 (95% CI 0.31-1.31); P=NS
Marshall et al. (2011) ¹⁵	Australia and New Zealand, 72,052 patient-years	Inception cohort of incident dialysis patients, of whom 865 were receiving frequent or extended HHD	21,184 patients included in Australian and New Zealand registry	HR 0.53 (95% CI 0.41–0.68); <i>P</i> <0.05 Per protocol
Lockridge & Kjellstrand (2011) ¹⁷	USA, 287 patient-years	87 patients receiving home NHD (mean 40 ± 6h per week)	87,121 incident dialysis patients from the 1998 USRDS cohort	SMR 0.53 (95% CI 0.34–0.79); <i>P</i> =0.005 Intention to treat
Nesrallah et al. (2012) ¹⁸	France, USA, Canada, 3,008 patient-years (median 1.8 years)	338 patients receiving intensive HHD (4.8 sessions per week, of 7.4h each)	1,388 patients from DOPPS	HR 0.55 (95% CI 0.34–0.87); <i>P</i> =0.01 Intention to treat
Weinhandl et al. (2012) ¹⁹	USA, mean 1.8 years	1,873 patients receiving daily HHD (5–6 sessions per week)	9,365 patients from USRDS	HR 0.87 (95% CI 0.78–0.97); <i>P</i> <0.01 Intention to treat



Long Interdialytic Interval and Mortality among Patients Receiving Hemodialysis

Robert N. Foley, M.B., David T. Gilbertson, Ph.D., Thomas Murray, M.S., and Allan J. Collins, M.D.



Daily Variation in Death in Patients Treated by Long-term Dialysis: Comparison of In-Center Hemodialysis to Peritoneal and Home Hemodialysis

Rathika Krishnasamy, MD,^{1,2} Sunil V. Badve, MD,^{1,2} Carmel M. Hawley, M Med Sci,^{1,2} Stephen P. McDonald, PhD,^{1,3} Neil Boudville, M Med Sci,^{1,4} Fiona G. Brown, PhD,^{1,5} Kevan R. Polkinghorne, PhD,^{1,5} Kym M. Bannister, MD,^{1,3} Kathryn J. Wiggins, PhD,^{1,6} Philip Clayton, MM Clin Epi,^{1,7,8} and David W. Johnson, PhD^{1,2}

Conclusions: Daily variation in the pattern of cardiac deaths was observed in HD patients receiving 3 or fewer dialysis sessions per week, but not in PD, home HD, and HD patients receiving more than 3 sessions per week.

Survival among nocturnal home haemodialysis patients compared to kidney transplant recipients

Robert P. Pauly¹, John S. Gill², Caren L. Rose², Reem A. Asad³, Anne Chery⁴, Andreas Pierratos⁵ and Christopher T. Chan³

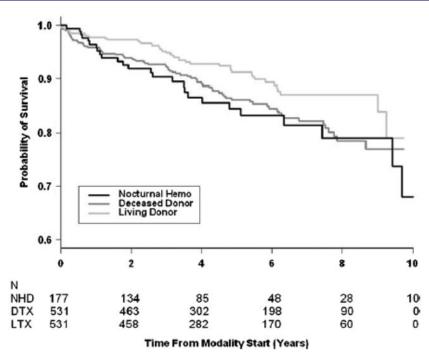
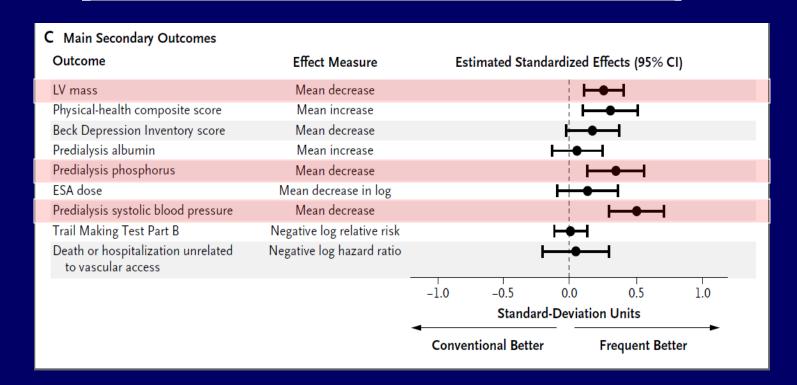


Fig. 1. Time to death in patients treated with nocturnal haemodialysis, deceased and living donor kidney transplantation (log-rank test, P = 0.03).

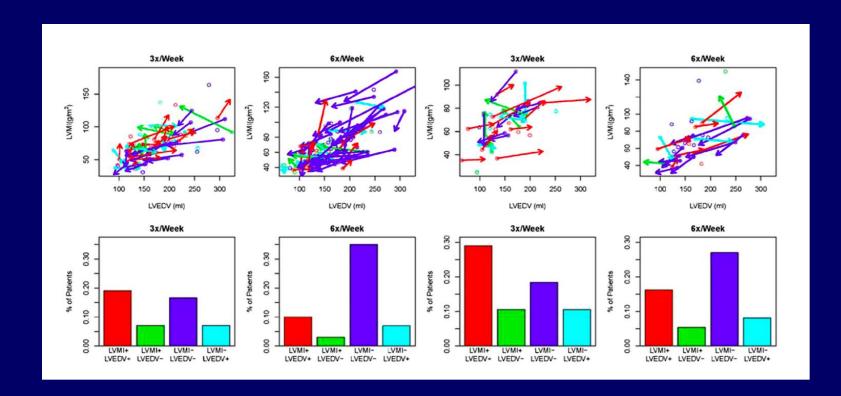
	HR^a	95% confidence interval	P-value
NHD (Reference group)	1		
DTX	0.87	0.50, 1.51	0.61
LTX	0.51	0.28, 0.91	0.02

Survival data suggest:

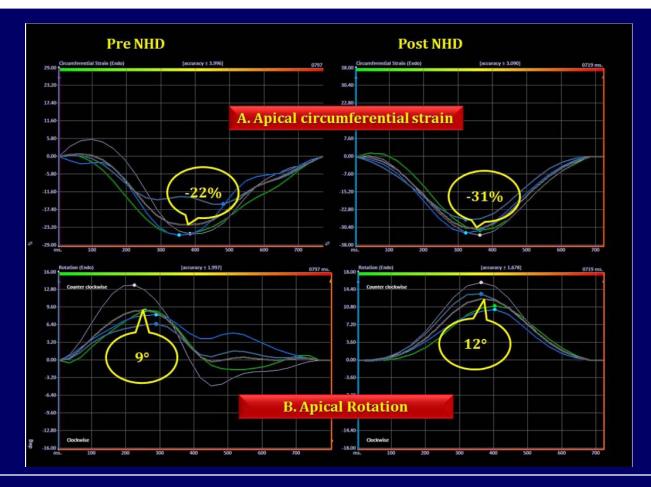

- Frequent HD is better than in-center HD
- BUT:
 - Not all frequent HD is equal
 - Intermittency of HD OR Frequency of HD?
 - Renal Tx versus Intensive HD
 - Better inform patient → choice

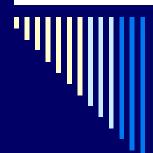
The NEW ENGLAND JOURNAL of MEDICINE

In-Center Hemodialysis Six Times per Week versus Three Times per Week

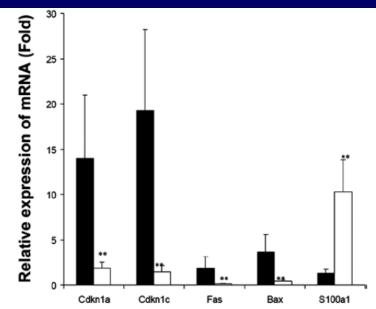

The FHN Trial Group*

Effects of Frequent Hemodialysis on Ventricular Volumes and Left Ventricular Remodeling


Christopher T. Chan,* Tom Greene,† Glenn M. Chertow,‡ Alan S. Kliger,§ John B. Stokes,¶ Gerald J. Beck,¶ John T. Daugirdas,** Peter Kotanko,†† Brett Larive,¶ Nathan W. Levin,†† Ravindra L. Mehta,‡‡ Michael Rocco,§§ Javier Sanz,||| Phillip C. Yang,‡ Sanjay Rajagopalan,¶ and the Frequent Hemodialysis Network Trial Group



Impact of Frequent Nocturnal Hemodialysis on Myocardial Mechanics and Cardiomyocyte Gene Expression

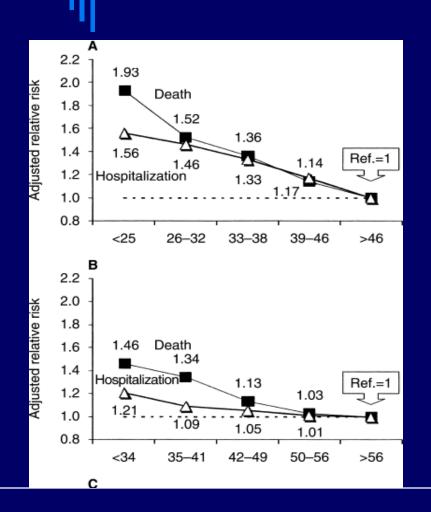

Christopher T. Chan, MD; Sara Arab, PhD; Shemy Carasso, MD; Gil Moravsky, MD; Guo Hua Li, PhD; Peter P. Liu, MD*; Harry Rakowski, MD*

Impact of Frequent Nocturnal Hemodialysis on Myocardial Mechanics and Cardiomyocyte Gene Expression

Christopher T. Chan, MD; Sara Arab, PhD; Shemy Carasso, MD; Gil Moravsky, MD; Guo Hua Li, PhD; Peter P. Liu, MD*; Harry Rakowski, MD*

Figure 2. Real-time quantitative polymerase chain reaction confirmation of cardiomyocyte gene signature before and after conversion from conventional to nocturnal hemodialysis. Black bar indicates conventional hemodialysis. White bar indicates nocturnal hemodialysis. **P<0.05 between conventional hemodialysis and nocturnal hemodialysis. *Cdkn1a* indicates cyclin-dependent kinase inhibitor 1A; *Cdkn1c*, cyclin-dependent kinase inhibitor 1C; *Bax*, *Bcl2-associated X protein; *S100a1*, *S 100 calcium binding protein A1.

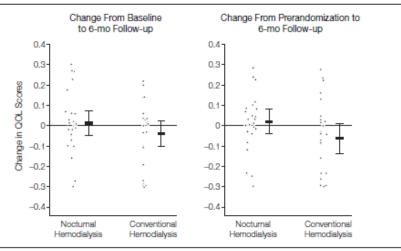
CVS data


- Frequent HD
 - BP control
 - LV mass decreases
- ALSO: STRUCTURE AND FUNCTION
- FHN Biomarker Study:

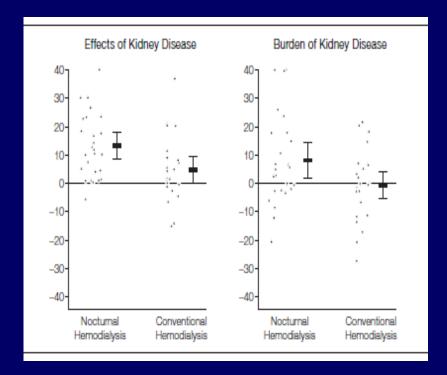
Surrogate Marker

Biology → ? Uremia → Accelerated Ageing

Why Do We Care About Quality of Life (Q of L)?



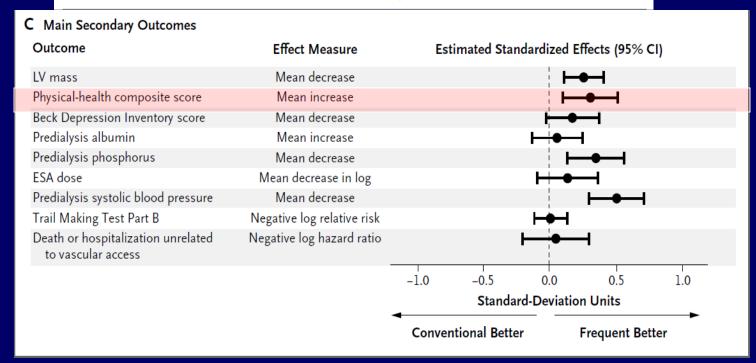
- DOPPS data base
- lower Q of L values associated with more hospitalization and death
- applies to both physical and mental components
- "adjusted" for comorbidities



QOL Changes: Results From AKDN

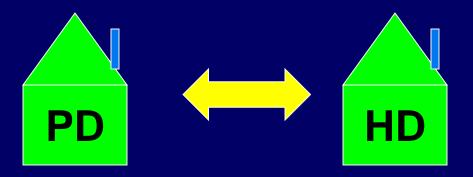
Figure 2. Change in Quality-of-Life Scores (EuroQol-5D Index) by Intent-to-Treat Analysis

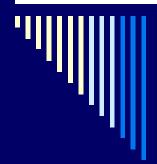
The horizontal bars indicate mean change and error bars indicate 95% confidence intervals (CIs). Quality-of-life (QoL) scores at baseline were -0.003 (-0.10 to 0.096) for nocturnal hemodialysis patients and -0.05 (-0.12 to 0.02) for conventional hemodialysis patients. Values at prerandomization were 0.683 (95% CI, 0.579-0.786) for nocturnal hemodialysis patients and 0.705 (95% CI, 0.611-0.800) for conventional hemodialysis patients.



The NEW ENGLAND JOURNAL of MEDICINE

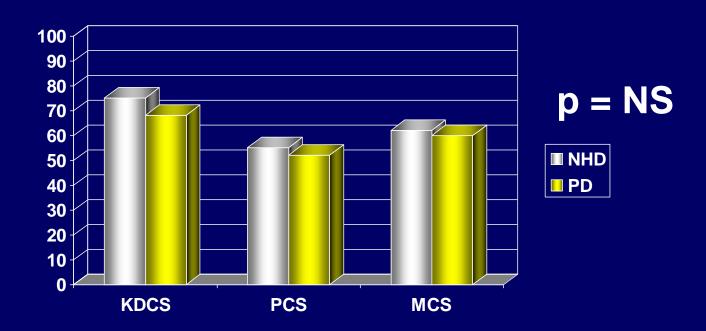
In-Center Hemodialysis Six Times per Week versus Three Times per Week


The FHN Trial Group*



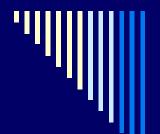
An Unanswered Question... Home vs Home

Are there differences in Quality of Life between Home PD and Home Hemodialysis?



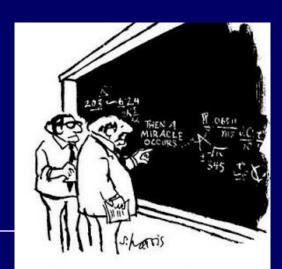
Quality of Life: The Toronto Study NHD vs PD

- patients on NHD or PD a minimum of 3 months
- English-speaking
- no recent acute illnesses or hospitalizations
- unbiased interviewer not associated with either program


Quality of Life: Component Scores

NHD vs PD: Illness Intrusiveness

Variable	NHD	PD	P value
Physical wellbeing and diet	3.81 <u>+</u> .30	3.98 <u>+</u> .20	NS
Work and finance	3.77 <u>+</u> .35	3.3 <u>+</u> 1.64	NS
Marital/sexual/family	3.32 <u>+</u> .31	2.78 <u>+</u> .22	NS
Recreation and social relations	3.23 <u>+</u> .28	3.11 <u>+</u> .18	NS
Other aspects of life	2.46 <u>+</u> .25	2.47 <u>+</u> .20	NS



Pregnancy Outcomes

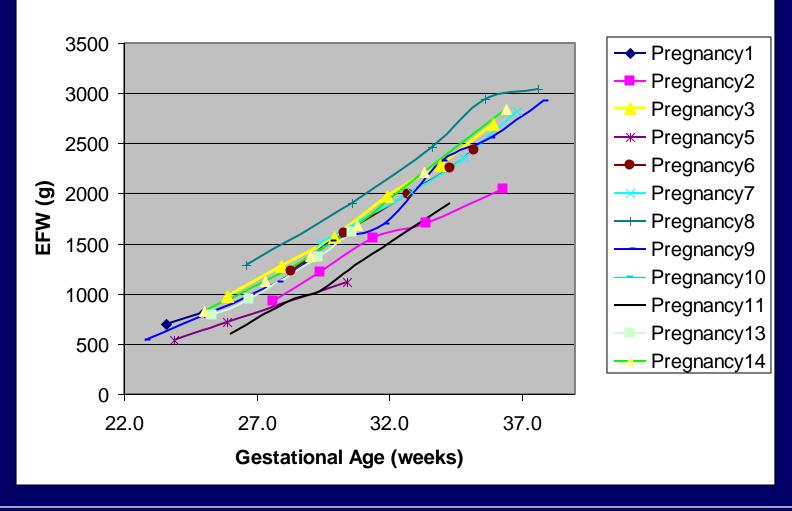
Table 1. Pregnancy outcomes^a

	Number of Weeks at Delivery	Mode of Delivery	Baby's Birth Weight (g)	Baby's APGAR Scores at 1 and 5 min
Patient 1	36	C/S	2020	9/9
Patient 2: Pregnancy 1	38	SVD	3000	5/8
Patient 2: Pregnancy 2	37^{4}	SVD	2785	9/9
Patient 3	36^{5}	Induced labor, vacuum extraction	2690	6/9
Patient 4	38^{5}	C/S	2750	8/9
Patient 5	30	SVD	1260	5/7

^aC/S, cesarean section; SVD, spontaneous vaginal delivery. Superscript numerals indicate days.

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Pregnancy Outcomes


TABLE 1. Incidence and outcome of pregnancy in women on chronic HD

Reference	Year	No. of pregnancies/no. of women	Incidence of pregnancy	Surviving infants	Neonatal deaths	Spontaneous abortion
3 4 5 6 7 8	1992 1994 1998 1998 1999 ^a 2002	27/380 58/1281 184/6230 15/1472 172/5000 18	7% 1.5% 2.2% 1% 3.4%	30% 37% 40% 50% 49% 50%	5% 3% 13% 5% 17%	44% 46% ————————————————————————————————

^aDetailed information on 74 pregnancies.

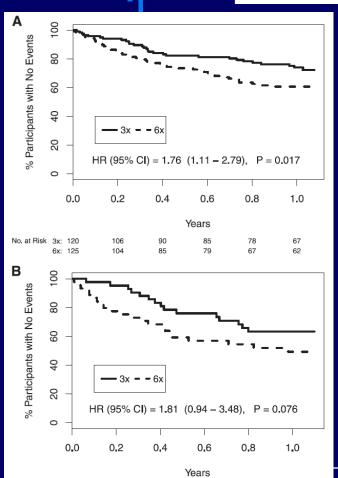
^{-,} not reported.

Estimated Fetal Weight (EFW)

Buttonhole

- AKA "Constant-site cannulation"
- Described in 1977 (Hospital for Miners, Poland)
- Cannulation:
 - Same spot
 - Same angle
 - Same depth
 - EVERY TIME

Scar tissue tunnel tract develops



No. at Risk 3x: 42

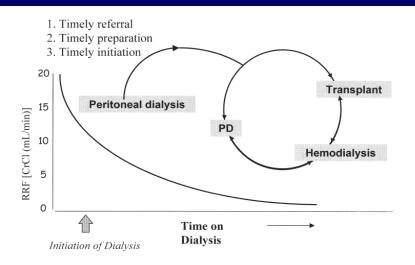
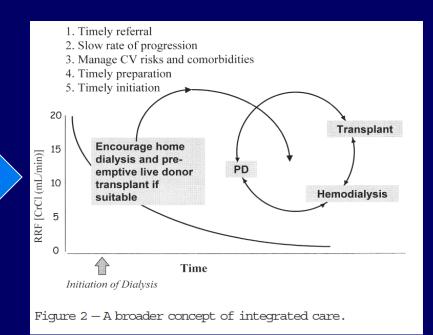

6x: 45

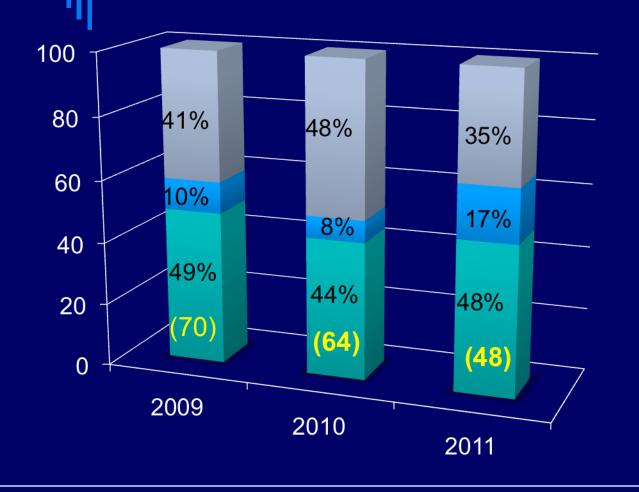
Risk of Vascular Access Complications with Frequent Hemodialysis

Rita S. Suri,* Brett Larive,[†] Susan Sherer,[†] Paul Eggers,[‡] Jennifer Gassman,[†] Sam H. James,[§] Robert M. Lindsay,* Robert S. Lockridge,^{||} Daniel B. Ornt,[¶] Michael V. Rocco,** George O. Ting,^{††} Alan S. Kliger,^{‡‡} and the Frequent Hemodialysis Network Trial Group

V - 11	Daily Trial			Nocturnal Trial		
Variable	Conventional	Daily	HR (95% CI)	Conventional	Nocturnal	HR (95% CI)
AVF/AVG ^a						
Patients (n)	106 (79/28) ^b	114 (90/28) ^b		28 (23/6) ^b	32 (29/3) ^b	
Total follow-up (yr)	87.9 (67.1/20.8)	95.8 (76.9/18.9)		24.2 (18.8/5.4)	24.3 (22.0/2.3)	
Repairs						
Angioplasty	21 (11/10)	28 (14/14)		5 (3/2)	14 (13/1)	
Stent placement	2 (2/0)	2 (1/1)		0 (0/0)	0 (0/0)	
Thrombectomy	10 (3/7)	22 (5/17)		1 (0/1)	2 (1/1)	
Surgical revision	5 (3/2)	14 (7/7)		1 (1/0)	0 (0/0)	
Overall rate (per 100 patient-yr)	43	69	1.68 (1.13–2.51) P=0.011	29	66	2.29 (0.94–5.59) P=0.069

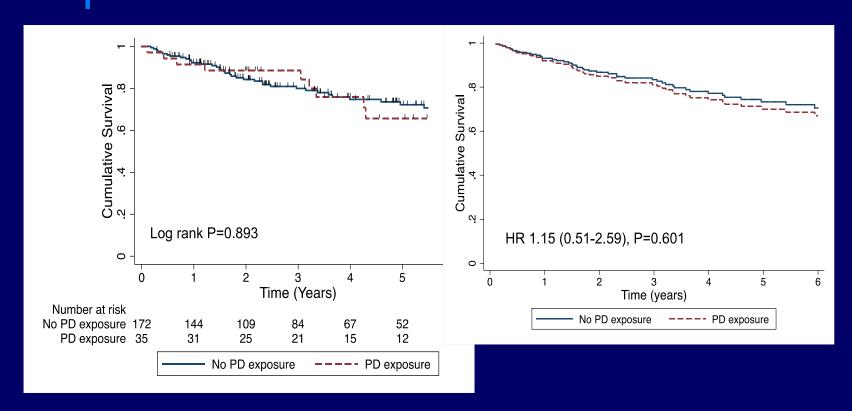
Integrated Home Dialysis


Figure 1 — The integrated care concept [based on Refs. (1), (3), and (4)].

Prevalent UHN Patients 2004 -2011 7% 100% 20% A 90% (105)28% H 80% 25% (169)70% (132) 60% ■ Home Hemo 50% PD ■ In-C Hemo 40% 65% 55% 30% (396)(285)20% 10% 0% 2004 2011

RMC Exits to Dialysis



- PD
- Home Hemo
- Incenter Hemo

Cumulative patient and technique survival : Integrated Home Dialysis System

Strategies to Enhance Home Dialysis Technique Survival

- □ HHD
- Training Quality
- □ CQI Adverse Events
- Intervention to address High risk Home Dialysis Patients

- PD
- Assisted PD
- □ Bio-compaitable solutions
- Intervention to address High risk Home Dialysis Patients

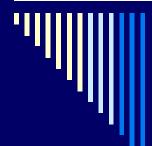
Determinants of training and technique failure in home hemodialysis

Michael E. SCHACHTER,* Karthik K. TENNANKORE,* Christopher T. CHAN Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada

 Table 2 Social and dialysis-associated factors among incident home hemodialysis patients

Characteristic	Failure $(n = 32)$	Success $(n = 145)$	P value
Social factors			
College/university education, n (%)	21 (68)	88 (61)	0.55
Renting current residence, n (%)	13 (41)	31 (21)	0.04
Living alone or with dependents, n (%)	9 (28)	26 (18)	0.22
Distance from HHD training unit, (median km, IQR)	19 (9–37)	22 (11–45)	0.18
Dialysis factors			
Nephrology follow-up before start of HHD, n (%)	27 (84)	140 (97)	0.02
Central venous catheter dialysis access, <i>n</i> (%)	22 (69)	71 (49)	0.05
RRT vintage, (median years, IQR)	0.8, 0-8.0	1.5, 0-12.0	0.71
Capacity to perform HHD independently, n (%)	26 (81)	101 (70)	0.28

HHD = home hemodialysis; IQR = interquartile range; RRT = renal replacement therapy.


Procedure-Related Serious Adverse Events Among Home Hemodialysis Patients: A Quality Assurance Perspective

Ben Wong, MD,¹ Deborah Zimmerman, MD,² Frances Reintjes, BScN,³ Mark Courtney, MD,¹ Scott Klarenbach, MD,¹ Graeme Dowling, MD,⁴ and Robert P. Pauly, MD, MSc, FRCPC¹

Table 2.	Causes	of A	dverse	Events

Case No.	Human Error(s) or Machine/ Disposable Defects	Immediate Cause of Adverse Event	Details
1	Human error	Blood loss	Ignored machine alarms; improper threading of connections; placement of wetness detectors in incorrect position
2	Human error	Air embolism	Neglected to clamp CVC
3	Possible human error, possible disposable defect	Blood loss	Possible failed integrity of cap; possibly did not correctly thread connections
4	Possible human error, possible disposable defect	Blood loss	Improper placement of clamp; failed integrity of cap
5	Human error	Blood loss	Improper machine setup; neglected to use wetness detectors
6	Human error	Blood loss	Improper threading of connections; placement of wetness detector in incorrect position
7	Human error	Blood loss	Did not follow machine setup protocol specific to local home HD program

Abbreviations: CVC, central venous catheter; HD, hemodialysis.

Randomized, Controlled Trial of Glucose-Sparing Peritoneal Dialysis in Diabetic Patients

Philip K.T. Li,* Bruce F. Culleton,[†] Amaury Ariza,[‡] Jun-Young Do,[§] David W. Johnson,^{||} Mauricio Sanabria,[†] Ty R. Shockley,[†] Ken Story,[†] Andrey Vatazin,[¶] Mauro Verrelli,** Alex W. Yu,^{††} and Joanne M. Bargman,^{‡‡} on behalf of the IMPENDIA and EDEN Study Groups

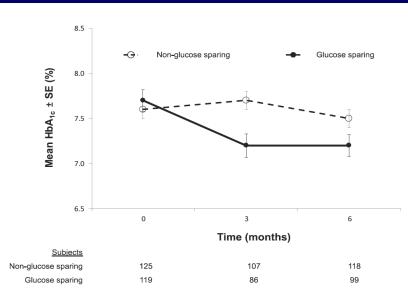


Figure 2. Mean hemoglobin A_{1c} (\pm SEM) at baseline, month 3, and end of study by treatment group in the intention-to-treat population. HbA1c, hemoglobin A_{1c} .

		Serious Adverse Events, n (Related Serious Adverse Events,		
ontrol Group	Intervention Group	Control Group	Intervention Group	
(n=127)	(n=124)	(n=127)	(n=124)	
345 ^b (14)	373 ^b (34)	78° (4)	105° (5)	
101 ^b (80)	98 ^b (79)	41° (32)	58° (47)	
	(n=127)	(n=127) (n=124)	(n=127) (n=124) (n=127)	
	345 ^b (14)	345 ^b (14) 373 ^b (34)	345 ^b (14) 373 ^b (34) 78 ^c (4)	

IMP*ENDIA, Improved Metabolic Control of Physioneal, Extraneal, Nutrineal versus Dianeal Only in DIAbetic continuous ambulatory peritoneal dialysis and au tomated peritoneal dialysis Patients; EDEN, Evaluation of Dianeal, Extraneal and Nutrineal versus Dianeal only in Diabetic CAPD Patients; PTH, parathyroid hormone.

^aRelatedness was judged by the clinical trial site investigator. The numbers of related events are shown in brackets.

^bP=0.15 for difference between groups in adverse event rate; P=0.92 for difference between groups in the number of patients with an adverse event.

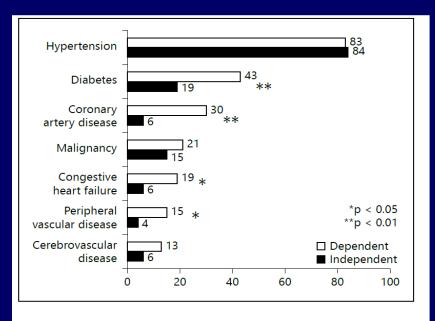
^cP=0.06 for difference between groups in serious adverse event rate; P=0.02 for difference between groups in number of patients with a serious adverse event.


Is Assisted Peritoneal Dialysis Associated with Technique Survival When Competing Events Are Considered?

Thierry Lobbedez,* Christian Verger,† Jean-Philippe Ryckelynck,* Emmanuel Fabre,† and David Evans†‡§

Table 6. Cause-specific relative hazard and subdistribution relative hazard associated with assisted PD (event of interest: transfer to hemodialysis)

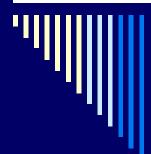
A		Cause-Specific RH (95% CI)				
Assistance	Death	Recovery	Transplantation	HD	RH for HD (95% CI)	
Family-assisted PD (reference group: nurse and self-care PD)	2.23 (1.97–2.53)	0.72 (0.40–1.31)	0.33 (0.24–0.46)	0.87 (0.75–1.01)	0.81 (0.70–0.94)	
Nurse-assisted PD (reference group: family and self-care)	2.18 (1.96–2.42)	0.74 (0.48–1.13)	0.16 (0.12–0.22)	0.85 (0.76–0.95)	0.72 (0.63–0.81)	
Assisted PD (reference group: self-care PD)	2.19 (1.98–2.43)	0.73 (0.49–1.10)	0.21 (0.17–0.26)	0.85 (0.77–0.95)	0.73 (0.65–0.81)	


Adjusted for age, sex, modified Charlson comorbidity index, underlying nephropathy, failed transplantation, transfer to hemodialysis, early peritonitis, and center size. RH, relative hazard; CI, confidence interval; HD, hemodialysis; PD, peritoneal dialysis.

The Feasibility of Caregiver-Assisted Home Nocturnal Hemodialysis

Karthik K. Tennankore S. Joseph Kim Christopher T. Chan

University Health Network/Toronto General Hospital, University of Toronto, Toronto, Ont., Canada


 $\textbf{Fig. 2.} \ \ \textbf{Baseline comorbidities stratified by dependency status}.$

Canadian Home Dialysis Virtual Ward Team

- Multisite Study (Funded through Baxter CEC grant program)
- Protcolised Telephone F/U
- High Risk Patients during transition from care
 - Graduating from training
 - Use of antibiotics
 - AV access instrumentation
 - Hospitalization

Other important considerations...

PERITONEAL DIALYSIS OUTCOMES AND PRACTICE PATTERNS STUDY

RESEARCH ARTICLE

Open Access

Choosing to live with home dialysis-patients' experiences and potential for telemedicine support: a qualitative study

Ellen Rygh^{1*}, Eli Arild¹, Elin Johnsen¹ and Markus Rumpsfeld²

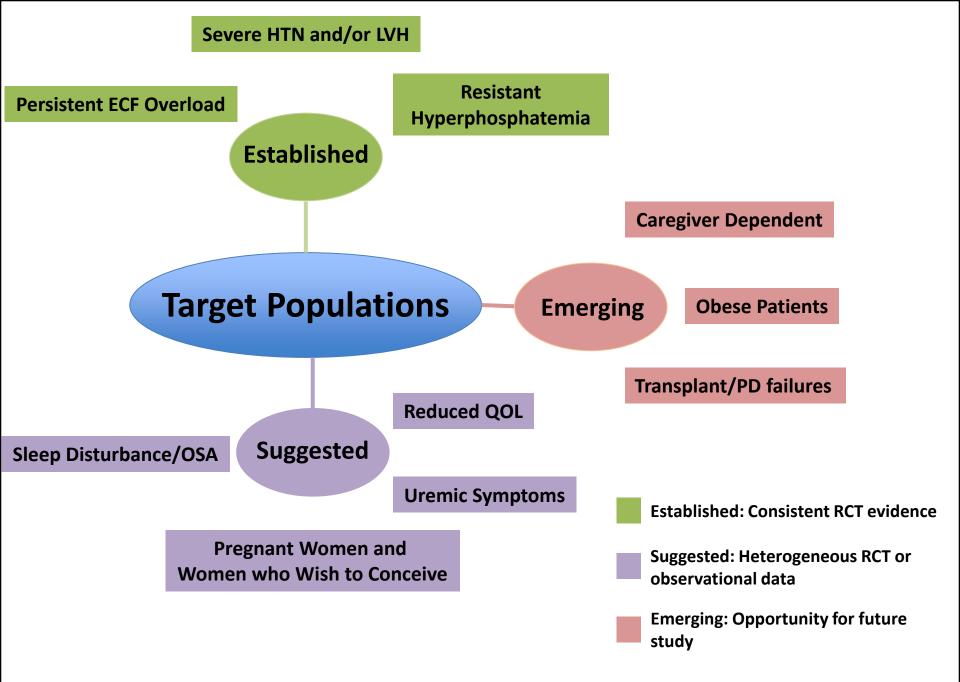
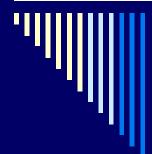




Figure 1. Established, suggested and emerging patient groups to whom IHHD may be considered

Summary

- There is a resurgence of interest in Home Dialysis
- Data suggest that augmented hemodialysis modifies
 - Survival
 - CVS outcomes
 - Pregnancy outcomes
- Adverse signal
 - Dialysis access
- Integrated Home Dialysis System
 - Education
 - Telehealth Strategies

Acknowledgments

- Human Cardiovascular Physiology Group
 - JS Floras
- Sleep Medicine
 - D Bradley
- Stem Cell Group
 - S Verma
 - H Messner
- Cardiovascular Genomics
 - Peter Liu
- Myocardial Mechanics
 - Harry Rakowski
- E-Health Group
 - J Cafazzo

GRANTING AGENCIES

- CIHR, HSFO, BUL Medicine, PSI, Baxter Extramural Grant Program, Baxter CEC Program NIDDK
- FHN Consortium
- ACTIVE Consortium