Biomarkers for Kidney Disease Lessons From Modeling Lupus Nephritis

Brad H. Rovin MD, FASN Professor of Medicine and Pathology Director, Division of Nephrology

Dr. Rovin has the following relevant financial relationships. Any real or apparent conflicts of interest related to the content of this presentation have been resolved.

Affiliation / Financial Interest	Organization
Research Grants	NIH, Mallinckrodt
DSMB/Adjudication	Takeda
Medical/Scientific Advisor	Biogen, Mallinckrodt, Lilly, GSK, A-Z, Genentech, Pfizer, BMS, BioMarin, Aurinia

Unapproved or Off Label Disclosures

This presentation may discuss unapproved or off-label, experimental or investigational use of Cyclophosphamide, MMF, AZA, Rituximab, CSA

The Current LN Biomarker Landscape...

- Papers published on LN biomarkers over the last decade: 266*
- Unique biomarkers identified: At least 45
- Categories of biomarkers: cytokines, growth factors, hormones, adhesion molecules autoantibodies, serum components, cell types
- Novel LN biomarkers in routine clinical use: 0

*source-PUBMED; key words-lupus nephritis, human, biomarkers, disease activity, since early spring

What Have the Barriers Been?

There are a number of contributing factors to the lack of novel biomarkers in clinical use, but among the most important are:

- A biomarker must be validated in an independent set of patients (*discovery is easier than validation*)
 - Validation cohorts must be of sufficient size, not a simple task in a rare disease
 - Validation cohorts must be well-phenotyped and prospective, especially if the biomarker is to represent a time-dependent clinical feature like flare or outcome
- A novel *clinical* biomarker must perform *better than* or *add to* existing clinical markers that are readily available and relatively inexpensive

So many markers, so little time... Focus on Biomarker Studies that Break Through These Barriers*

*Apologies if your favorite biomarkers are not discussed...

Biomarker Studies with Validation Cohorts

A Urine Biomarker Panel of Active LN in Children

- Surveyed literature for individual biomarkers that seemed to reflect LN activity
- Tested these biomarkers in all combinations to see if they could derive a biomarker panel that reflected active LN
- Tested the panel in a discovery cohort; validated the panel in an independent cohort
- Biomarkers tested were: MCP-1, NGAL, VCAM-1, TF (transferrin), CP (ceruloplasmin), LPGDS (lipocalin-type prostaglandin D synthase), AGP (alpha-1 acid glycoprotein)

A Urine Biomarker Panel of Active LN in Children (cont.)

- Urines collected from patients with biopsy proven LN or no LN, with or without active extra-renal disease
- Urines were not collected at the time of kidney biopsy
- Active LN defined by renal BILAG plus history of LN on biopsy

Variable	Discovery Cohort		Validation Cohort	
	Active LN	Non-LN	Active LN	Non-LN
Ν	15	46	16	14
Caucasian (%)	13	50	0	0
African Descent (%)	20	11	69	36
Hispanic (%)	0	0	31	57
Carribean (%)	13	4	0	0
Mixed Race (%)	20	0	0	0
Asian-Indian (%)	21	24	0	7
Asian-Chinese (%)	13	11	0	0

Analyte Levels in Active and Non-Active LN

- For most of these analytes there is considerable overlap in levels between active and non-active LN
- This suggests that no single analyte is sufficient to accurately differentiate active LN from inactive disease

Building the Panel

- From these analytes binary logistic regression models using two variables at a time and all combinations of analytes were developed and the model that best differentiated active LN from inactive LN was used as a starting point
- In a step-wise fashion the other analytes were added to see if the ability to differentiate active from inactive LN improved based on AUC of ROC

Analyte Model	AUC Discovery	AUC Validation
AGP+CP	0.881	0.982
AGP+CP+LPGDS	0.900	0.982
AGP+CP+LPGDS+TF	0.920	0.991
AGP+CP+LPGDS+TF+ VCAM-1	0.920	0.987
AGP+CP+LPGDS+TF+VCAM-1+MCP-1	0.920	-

Effect of Traditional Biomarkers

- Renal function, proteinuria and urine sediment could not be tested because they make up the standard of comparison for this study (BILAG2004)
- Tested other traditional Lupus and LN biomarkers used in clinical practice alone and in combination

Analyte Model	AUC Discovery	AUC Validation
dsDNA	0.617	0.643
C3	0.645	0.638
C4	0.593	0.482
ESR	0.796	-
dsDNA+C3+C4+ESR	0.783	0.670 (no ESR)
AGP+CP+LPGDS+TF+ESR	0.910	-

Final Model Including Discovery and Validation Cohorts

Smith et al, Ped Nephrol, 2017

Strengths and Weaknesses

STRENGTHS

- Based on promising biomarkers already shown to have some value in the literature
- Panel approach-no single biomarker is good enough
- Discovery cohort plus a completely independent validation cohort
- Considerable patient diversity

WEAKNESSES

- This model reflects BILAG (clinical) not histologic LN activity
- BILAG is easily measured and inexpensive compared to a novel biomarker panel
- Active LN was compared to non-renal lupus; it would be more robust if active LN was compared to non-active LN
- Model was developed on cross-sectional data; it would be more robust if built using longitudinal data from patients who have active LN, are treated, and remit

In Assessing LN Activity What is the *Gold Standard* for Biomarker Development-Biopsy or Clinical Information?

A cohort of Hispanic LN patients who were re-biopsied after at least 42 months of immunosuppressive treatment and 30 months of clinical inactivity/stability

- Complete Renal Response (CR) Normal SCr and Up < 500 mg/d
- Partial Renal Response (PR) Stable SCr and 500 ≤ Up ≤1000 mg/d
- Only 44% of complete clinical responders had complete histologic remission (AI = 0)
- 62.5% of the patients with persistent proteinuria (PR) had complete histologic remission

Clinical Data Does Not Reflect Histologic Activity

Urinary Leukocytes as Biomarkers of LN Activity

- Observed urine mononuclear leukocytes were increased in patients with new LN and not present in patients with recent LN who had been treated
- Wanted to determine if urine T cells could differentiate patients with active LN
- Active LN was defined as having two of the following criteria:
 - Active urine sediment reflecting glomerular injury
 - New onset proteinuria >0.5g/d
 - Kidney biopsy showing active nephritis
- 21 of 22 patients with active LN had a biopsy at the time of urine collection

ROC Analysis of Urine T Cells as Activity Biomarkers

Patients with active LN (n=22) compared to patients with lupus but no history of LN (n=14)

Patients with active LN (n=22) compared to patients with history of LN but not currently active (n=8)

Urine T Cells Over Time

Patients with active LN (n=16) were followed until resolution of LN and urine for T cell analysis was obtained; T cell levels were compared during active and inactive disease

Strengths and Weaknesses

STRENGTHS

- LN activity based at least partially on kidney biopsy with urine obtained at the time of biopsy
- Longitudinal follow-up

WEAKNESSES

- Very small cohort; not diverse
- No validation
- Inactive LN is not proven histologically
- Small improvement over proteinuria alone

-Proteinuria is a good biomarker of LN activity during the initial episode of LN -Later it is hard to determine if proteinuria is due to active LN or residual scar -Would like to see this study done with the comparator being histologic activity and the biomarker being urine T cells plus proteinuria

Validation of Urinary Leukocytes

- ROC curves were generated for urinary WBC to differentiate active LN from inactive LN and non-renal lupus
- The AUC for proteinuria was 0.92 and SCr 0.60
- Caveats
 - Small number of patients: LN n=19; SLE n=55
 - Active LN confirmed by biopsy only in 14 patients; in the rest active LN was defined by SLEDAI
 - Inactive LN not
 verified by biopsy

Kopetschke et al, Arth Res Ther, 2015

Getting More Granular: Biomarkers of Specific Histologic Lesions in LN

- Using an agnostic approach (urine proteomics), several analytes were found to be differentially-expressed when patients who had significant interstitial inflammation were compared to those who did not
- Analyte levels were quantified by ELISA; uHPX is an example
- While the average level of uHPX was significantly different between levels of interstitial inflammation, there was considerable overlap among individual patients
- This degree of overlap precluded use as a biomarker

Solution: Combine Individual Biomarkers with Limited Accuracy Alone into a Composite Biomarker that Predicts Kidney Pathology Accurately and Reliably How: Linear Discriminant Modeling to Develop and Test Biomarker Panels

Linear Discriminant Modeling

- The composite biomarker takes the following form:
 - Y_{kidney lesion} = X₁In(analyte₁)+X_nIn(analyte_n)
 X₁...X_n are the weighting factors for the n test biomarkers
- Measured biomarker values are put into the equation to calculate Y_{kidney lesion}
- If Y ≥ pre-determined threshold the presence and/or intensity of a pathologic lesion can be diagnosed

Analytes Studied

Birmingham et al, Neph Dial Trans Suppl 1, 2017

Training Set: Tubulointerstitial Inflammation or Fibrosis

- Analytes were measured in an adult LN cohort (n=81)
- All combinations of analytes were tested to find the combination that maximized the sum of sensitivity and specificity and gave the fewest number of misclassifications
- The composite biomarkers were tested for their ability to discriminate between:
 - Interstitial Inflammation ≤25% and >25%*
 - Interstitial Fibrosis ≤25% and >25%

*Fibrosis and/or inflammation above 25% has been associated with poor long-term kidney outcomes (ESRD) and below 25% better long-term renal survival

Results-Training Set

Fibrosis

Y = 2.3*log(Scr) + 1.4*log(uHPX) – 2.1*log(uEPCR) + 7.42* If Y<0 fibrosis is ≤25%; If Y≥0 fibrosis is >25%

• Misclassification Rate: 23%

Inflammation

Y = 3.7*log(SCr) + 1.2*log(uHPX) + 1.2*log(uMCP-1) – 3.6* If Y<0 inflammation is ≤25%; If Y≥0 inflammation is >25%

Misclassification Rate: 18%

Birmingham et al, Neph Dial Trans Suppl 1, 2017

Biomarker Performance-Training Set

Birmingham et al, Neph Dial Trans Suppl 1, 2017

Biomarker Performance-Validation Set

Parameter	Interstital Fibrosis Biomarker	Interstitial Inflammation Biomarker			
	Training Set				
Sensitivity	70%	72%			
Specificity	81%	79%			
Misclassification Rate	22.7%	22.5%			
	Validation Set (n=53)				
Sensitivity	44%	80%			
Specificity	91%	92%			
Misclassification Rate	17.6%	9.4%			

- Misclassifications: The interstitial inflammation equation over-classified patients as >25% inflammation. The fibrosis equation tended to over and under-classify equally
- Misclassification rate for percutaneous needle kidney biopsies (gold standard) are ≈25% if 10 glomeruli are present in biopsy and ≈15% if 20 glomeruli in biopsy; difficult to estimate interstitial disease misclassifications
- A non-invasive misclassification rate of 10-20% may be acceptable

Strengths and Weaknesses

STRENGTHS

- Biomarker compared to biopsy
- Urine collected at time of biopsy
- Multi-biomarker panel
- Validation set

WEAKNESSES

- Modest cohort sizes
- Semi-quantitative estimate of fibrosis/inflammation
- No longitudinal data to demonstrate that the biomarkers can be used to follow response to treatment (for example, resolution of inflammation; no progression of fibrosis)
- Longitudinal data would ideally require repeat biopsies

Longitudinal Biomarker Studies

The Importance of Longitudinal Data

• Anti-complement autoantibodies are seen in SLE but not healthy controls

- Anti-C1q levels do not change during periods leading to LN flare
- Cross-sectional studies done at LN flare give the impression Anti-C1q is a marker for active LN
- However longitudinal analysis suggests anti-C1q does not change much in LN patients who move from quiescent disease to flare; does not discriminate well
- Anti-C3b levels 个 at LN flare, discriminates active from inactive LN better than anti-C1q
- Longitudinal data allow analytes to be assessed as predictors of future events (flare)
 Birmingham et al, Clin J Am Soc Nephrol, 2016

Colony Stimulating Factor-1 During LN Flare

- CSF-1 is made by tubular epithelial cells in LN mice and mediates the expansion of M1 macrophages in the tubulointerstitial compartment and subsequent tubular cell apoptosis
- Urine and serum CSF-1 reflect intra-renal, tubulointerstitial CSF-1 expression
- Urine and serum CSF-1 were measured longitudinally during LN flare cycles

The increase in CSF precedes and therefore may predict impending flare, allowing preventative treatment

Menke et al, J Am Soc Nephrol, 2015

Strategy for Biomarker Development in LN

- Biomarkers should be assessed prospectively and longitudinally in appropriately sized cohorts
- Biomarkers should be verified in independent cohorts that represent the racial and ethnic diversity of SLE
- Clinical biomarkers should perform better than conventional clinical criteria
- To perform better than conventional markers novel LN biomarkers will often need to be measured against the kidney biopsy

The People That Do the Work...

Ohio State Wexner Medical Center

- Dan Birmingham
- Lee Hebert
- Samir Parikh
- Michael Freitas
- Xiaolan Zhang
- Huijuan Song
- Anthony Alvarado
- John Shapiro
- Tibor Nadasdy
- Anjali Satoskar

Hospital Fernandez, Buenos Aires

- Ana Malvar
- Bruno Lococco

University of Louisville

- Jon Klein
- Michael Merchant

Brigham and Women's Hospital

- Joe Bonventre
- Sus Waiker