The Management of Pauci-Immune Glomerulonephritis

Brad H. Rovin MD, FASN Professor of Medicine and Pathology Director, Division of Nephrology The Ohio State University Wexner Medical Center

Dr. Rovin has the following relevant financial relationships. Any real or apparent conflicts of interest related to the content of this presentation have been resolved.

Affiliation / Financial Interest	Organization
Research Grants	NIH, Mallinckrodt
DSMB/Adjudication	Takeda
Medical/Scientific Advisor	Biogen, Mallinckrodt, Lilly, GSK, A-Z, Genentech, Pfizer, BMS, BioMarin, Aurinia

Unapproved or Off Label Disclosures

This presentation may discuss unapproved or off-label, experimental or investigational use of Cyclophosphamide, MMF, AZA, Rituximab, CSA

A Case of Rapidly Progressive Kidney Failure

A 60 year old white male was found to have acute renal failure with a serum creatinine of 4 mg/dl. Urine dipstick showed large blood and 2+ protein. Previously, the patient had been in good health, took no medications and at his yearly physical 3 months ago his serum creatinine was 0.9 mg/dl. Other than fatigue, decreased appetite and a minor upper respiratory infection a week before hospitalization, there had been no antecedent symptoms. A chest radiograph was unremarkable. Over the next two days the patient became oliguric, SCr increased to 6 mg/dl and he required dialysis.

A procedure was performed...

The Patient's Renal Histology

Proliferation, necrosis, crescents and tubulointerstitial damage can be seen in a number of kidney diseases; more histologic and serologic information is needed!

IF Microscopy and Serologic Data

Diagnosis: Pauci-immune ANCA-associated glomerulonephritis

lgG

What is Pauci-Immune Glomerulonephritis?

Pauci-immune GN is a necrotizing, often crescentic GN characterized by minimal immune deposits in the glomeruli; it is frequently accompanied by a rapid deterioration in kidney function

Pauci-immune GN is often associated with anti-neutrophil cytoplasmic antibodies (ANCA) as part of the spectrum of ANCA-Associated Vasculitis (AAV)

Vaeculitie

	Vasountis				-	
	ANCA-		Symptoms (%)	ANCA-positive $(n = 51)$	ANCA-negative $(n = 33)$	<i>P-</i> value
	ANCA+		Constitutional	76.5	78.8	0.41
			Renal	74.5	97	0.002
			Pulmonary	70.6	60.6	0.18
			Arthralgia	39.2	15.2	0.009
			Mucocutaneous	19.6	27.3	0.21
			URT	25.5	6.1	0.01
	P	GN	Neurological	17.6	0	0.004
			Ocular	11.8	3	0.09
		$7 \wedge L$	BVAS	19.9	15.4	0.001
6		10-40% A Negative	ANCA	Sharma et al,	Int J Rheum Dis,	2016

How Pauci is Pauci-Immune GN?

	PR3 (n = 55)			MP	°O (n =	= 74)
Glomerular Staining	1+, 2+	>2+	% +	1+, 2+	>2+	%+
IgA	15	2	(30.9%)	22	1	(31.1%)
lgG	20	1	(38.2%)	40	1	(55.4%)
IgM	37	4	(74.5%)	48	6	(73.0%)
C3	39	9	(87.3%)	47	19	(89.2%)
C1q	8	0	(14.5%)	22	0	(29.7%)
C4	2	0	(3.6%)	4	0	(5.4%)

Pauci-immune GN does not mean absence of immune deposits in the glomeruli

Vizjak A, et al. Am J Kidney Dis. 2003;41:539-49

Back to the Patient: Approach to Therapy

When is Treatment for Pauci-Immune GN Futile?

Cohort

- Retrospective AAV population of 155 patients
- Average eGFR: 7 ml/min/1.73 m² at presentation; 87% needed RRT
- MPO ANCA 56%; PR3 ANCA 44%
- Renal limited disease: 29%
- Treatment: CYC+steroids-87%; Steroids alone-13%; PLEX added-28%

Independent Variables Associated with Outcomes

ESRD	Death	ESRD + Death
Treatment Response by 4 months	Treatment response by 4 months	Treatment Response by 4 months
HR 0.06; P<0.001	HR 0.09; P<0.001	HR 0.09; P<0.001
	Age <54 years: HR 0.25; P<0.04	CYC use: HR 0.39; P=0.01
	CYC use: HR 0.43; P=0	

Treatment response: Dialysis independent; eGFR >20 ml/min/1.73 m²; no clinical signs of active systemic vasculitis Variables *not* associated with adverse outcomes were: Histologic Class; ANCA sub-type

Multivariable Model of Response at 4 months

- Induction with CYC: OR=4.4 (compared to steroids alone)
- Baseline eGFR >10 ml/min/1.73 m² (compared to eGFR ≤10)
- 1.2 for every unit decrease in biopsy chronicity score

Probability of response is still >14% even with high chronicity on biopsy and eGFR<10 ml/min/1.73 m²

Conclusion-Treatment Futility

- Cyclophosphamide and Corticosteroids should not be withheld from anyone with AAV and Nephritis no matter how poor their initial kidney function or how chronically damaged their kidney biopsy may appear
- If there is no treatment response by 4 months the chance of sustained, dialysis-free kidney survival is <5%
- This question has not been examined with Rituximab induction

Corticosteroids Are Needed in All Induction Regimens

Recently, this dogma has been challenged by:

Randomized Trial of C5aR Inhibitor Avacopan in ANCA-Associated Vasculitis

Jayne et al, J Am Soc Nephrol, 2017

Rationale for Complement Inhibition in AAV

Xiao et al, et al, Kidney Int 2012

Trial Design and Results

- Randomized, double-blind, placebo-controlled clinical trial in Europe
- Newly-diagnosed or relapsing ANCA-associated vasculitis
- Patients were treated with CYC (81%) or RITUX (19%) for induction immunosuppression
- SOC arm received placebo plus prednisone $60 \text{mg/d} \rightarrow 10 \text{mg/d}$ by week 12
- Experimental arms received C5aR inhibitor plus either low-dose prednisone (beginning at 20mg/d) or no prednisone (steroid free) for 12 weeks
- Primary end-point was the proportion of patients achieving a ≥50% reduction in BVAS by week 12 and no worsening in any organ system

Rapidity of Response: Time is Nephrons

Looking Specifically at Renal AAV

Baseline Characteristics (% of patients)

	SOC	Low Pred	No Pred
Renal Involvement	100%	95%	95%
个SCr	65%	50%	27%
Hematuria	96%	91%	95%
Proteinuria	78%	91%	73%
Hypertension	13%	23%	9%
eGFR (ml/min)	48	53	55
uALB/Cr	28- 5962	24-2459	25-3051

(% Change from Baseline to 12 wks)

	SOC	Low Pred	No Pred
Renal BVAS	-53	-77	-62
Urine RBCs	-92	-83	-85
eGFR	+6	+6	+0.8

Albuminuria (% Change from Baseline)

A Phase III Trial is Now Underway

Cyclophosphamide for Induction

- Cyclophosphamide is SOC for induction of remission in AAV, especially severe cases with kidney involvement
- Delivery format (ORAL vs INTRAVENOUS) has been prospectively tested

- Oral CYC was given as 2 mg/kg until remission then 1.5 mg/kg for 3 months
- Pulse CYC (15 mg/kg) was given at 3 week intervals for 3 months beyond remission
- Adverse events were similar between oral and IV CYC; leukopenia was higher in the oral arm

De Groot et al, Ann Int Med, 2009;

Oral vs IV Cyclophosphamide-Long-Term Follow-Up

- Despite more relapses in the pulse CYC group, there were no differences in last renal function and ESRD (13% IV; 11% Oral)
- Relapses were mostly extra-renal; renal relapses were the same between groups
- Relapses were higher in PR3 ANCA
- No differences in adverse events or overall duration of immunosuppression

Harper et al, Ann Rheum Dis, 2012

Rituximab for Induction?

On the basis of two trials Rituximab was approved for induction of remission in AAV:

RAVE: Rituximab vs Oral Cyclophosphamide

Stone, J. H. *et al.* Rituximab versus cyclophosphamide for ANCA-associated vasculitis. *N. Engl. J. Med.* 363, 221–232 (2010).

RITUXVAS: Rituximab + IV Cyclophosphamide vs IV CYC

Jones, R. B. *et al.* Rituximab versus Cyclophosphamide in ANCA-Associated Renal Vasculitis. *New England Journal of Medicine* 363, 211–220 (2010).

Cyclophosphamide has a long track record of success in AAV and PIGN. To replace cyclophosphamide rituximab should provide one or more of the following benefits:

- Better efficacy in remission induction
- Better safety/fewer adverse events
- Better long-term preservation of kidney function
- Better cost-effectiveness

RAVE

EFFICACY RITUXIVAS

Prednisone + CYC 2mg/kg/d until remission; maintenance AZA 2 mg/kg/d

Prednisone + Ritux 375 mg/m² for four doses; no maintenance immunosuppression

Mean Creatinine Clearance 54-65 ml/min; SCr could not be >4mg/dl Methylprednisolone→Prednisone + CYC 15 mg/kg IV q2wks X3 then q3wks until stable remission; maintenance AZA 2 mg/kg/d

Methylprednisolone→prednisone + Ritux 375 mg/m² for four doses + CYC 15mg/kg IV with the first and third rituximab infusions; no maintenance immunosuppression

Median eGFR ≤20 ml/min/1.73 m²; dialysis needed in 24% of the rituximab patients

Complete Response 6 Months	RITUX (%)	CYC (%)	Remission (%)	100 - 75 -	F		, /	R	ituximab gr	oup	
On no prednisone	64	53	lence of	50-	ł						
On <10mg/d prednisone	71	62	tive Incic	25-							
Relapsing Disease	67	42	Cumulat	0		ntrol gr	oup 6	8	10	12	
					Mo	onthe at	ter Rando	mization			

No time course of response was provided for RAVE; for RITUXIVAS the Ritux arm was slower to remit

RAVE SAFETY RITUXIVAS

No difference in adverse events between groups; leukopenia was more frequent in the CYC arm

RAVE Long-Term Efficacy **RITUXIVAS**

This is only the RAVE patients who had Renal Involvement

% in Complete Remission at 6, 12 and 18 Months

CR	PR3		MPO		Nev	v Dx	Relapse	
	R	С	R	С	R	С	R	С
6	67	61	52	65	50	69	72	53
12	40	46	52	48	42	59	48	26
18	37	46	52	39	42	53	40	26

None of the differences were significant for either the RAVE or RITUXIVAS long-term data

months

Geetha, J Am Soc Nephrol, 2015; Jones et al, Ann Rheum Dis, 2015

months

Do These Studies (Unequivocally) Support Rituximab Over Cyclophosphamide in AAV/PIGN?

No, not yet...

- There were no differences in outcomes (long or shortterm) or adverse events
- The RAVE trial did not include patients with severe PIGN
- The RITUXVAS trial did include patients with severe PIGN, but these patients were treated with CYC + Rituximab
- There are no prospective, randomized trials comparing CYC to Rituximab for severe AAV/PIGN to date, but PEXIVAS may provide answers soon

Cancer and Choice of Induction Therapy

Patients with AAV have a 1.89-fold increased risk of cancer compared to general population

Treatment†	Patients (n)	S	*(95% CI)‡	SIR p Value‡	Cycloph dose (g)	osphamide cu), mean (SD)§	mulative	Follow-u mean (SI	p (years), D)¶
Only cyclophosphamide	119	3	.10 (2.06 to 4.48)	<0.001	7.26 (4.9	94)		4.92 (3.10))
Only rituximab	41	0	.67 (0.08 to 2.43)	0.86	0.00			6.34 (3.56	5)
Cumulative dose (g)	Patients (n)	N obs	erved malignancies	SIR (95% CI)	t	SIR p Value†	RR (95% CI)1	·	RR p Value†
Cyclophosphamide									
0	89	8	Dose 个	1.37 (0.59 to	2.70)	0.47	1 (referenc	e)	
0.1–20	207	31		1.91 (1.30 to	2.71)	0.001	1.39 (0.63 to	3.50)	0.52
20–108	16	5	SIR/RR 'J'	5.06 (1.64 to	11.82)	0.007	3.69 (0.95 to	12.78)	0.06
Rituximab									
0	167	34	Dose A	2.86 (1.98 to	3.99)	<0.001	1 (referenc	e)	
0.1–6	70	7		1.41 (0.57 to	2.90)	0.47	0.49 (0.18 to	1.13)	0.11
6–18	83	3	SIK/KR ↓	0.45 (0.09 to	1.32)	0.10	0.16 (0.03 to	0.50)	<0.001

*SIR: Adjusted ratio of observed to expected malignancies

- These were non-melanoma skin cancers; no significant differences for other malignancies
- The striking finding is that rituximab may REDUCE the incidence of malignancies in AAV
- Consider rituximab as first choice in previously-treated, flaring patients

Van Daalen et al, Ann Rheum Dis, 2017

Should PLEX be Added to the Induction Regimen?

- MEPEX-open-label RCT of treatment-naïve European patients with renal AAV who required dialysis or had a SCr >500 µmol/L (5.8 mg/dL)
- Patients were randomized to methylprednisolone 1gm/d X3 or 7 courses of PLEX
- All patients were then given oral prednisolone tapered over 6 months (1mg/kg/d-initial dosing), cyclophosphamide 2.5 mg/kg/d for 3 months, and AZA 2mg/kg for maintenance
- In multivariate analysis renal recovery was associated with PLEX (0.04) but not age, diagnosis (GPA/MPA) or ANCA subtype

Outcome	IV MP n=67	PLEX n=70	Р
Renal Recovery 3 months	49%	69%	0.02
Free from Dialysis at 12 months	43%	59%	0.008
Survival at 3 months	84%	84%	NS
Survival at 12 months	76%	73%	NS
Survival Long-Term (median 4 yrs)	49%	49%	0.75
ESRD Long-Term (median 4 yrs)	49%	33%	0.08

- PLEX did not confer a survival advantage long-term
- Infections were major cause of death, more in PLEX group, but not significant
- Many remaining questions: Methyl Pred + PLEX, ritux + PLEX, more PLEX, less severe AAV
- Some answers from PEXIVAS trial after completion

Maintenance Immunosuppression for PIGN

- AAV and PIGN are relapsing diseases and it is necessary to keep patients on some form of immunosuppression after induction
- Current SOC for maintenance is AZA; this replaces maintenance with cyclophosphamide and MMF
- The RAVE and RITUXVAS trials challenged this paradigm; in the rituximab arms of both trials no maintenance immunosuppression was given after the initial rituximab administration and steroids were tapered off or down to low levels
- In long-term follow-up of 1.5-2 years the patients in the rituximab arms did as well as the patients in the CYC arms who received AZA for maintenance with respect to survival and relapses
- It was conceivable that rituximab may be good for long-term maintenance in AAV

AZA vs Rituximab for Maintenance of AAV

- **Remission was induced** with prednisone, CYC and some patients received pulse MP
- CYC was 0.6 gm/m^2 on days 0, 14, 28 and then 0.7 g/m^2 every three weeks until remission
- **17** major relapses occurred in AZA group; 3 in the rituximab group
- 8 of the major AZA relapses involved the kidney; none of the rituximab relapses were renal

Guilliven et al, N Eng J Med, 2014

A First Look at MAINRITSAN 2 Results

After induction of remission was achieved with corticosteroids and an immunosuppressive agent patients were randomized to:

Systematic RTX: 500mg on D1 and D15 followed by 500 mg every 6 months through month 18

Tailored RTX: 500 mg on D1 followed by an examination of ANCA status and B Cell counts every three months; RTX was redosed (500mg) if B cells became > 0/mm³ or if ANCA went from negative to positive or if ANCA titers 27 increased *Fre*

French Vasculitis Study Group, Presented at the 2017 AAV International Meeting, Tokyo

What is the Duration of Maintenance Immunosuppression?

- Unclear, but may be answered by the REMAIN study of short or long courses of AZA
- Patients on dialysis with no recovery after 3 months and no other systemic involvement may no longer need maintenance
- It has been suggested that MPO-ANCA patients may not need maintenance as relapse rate is far less than PR3-ANCA, but...

In a cohort of 126 patients with AAV and rapidly progressive renal deterioration treated with PLEX in addition to corticosteroids and immunosuppression, the relapse rate for MPO and PR3-ANCA was the same

Kemma et al, J Am Soc Nephrol, 2015; de Luna et al, J Autoimmunity, 2015

How Long Should Rituximab be Given for Maintenance?

 Even after induction with rituximab and maintenance for 2 years with fixed-interval rituximab, relapses began occurring after stopping the rituximab (green line)

- Patients were kept on fixed-interval maintenance with rituximab, median follow-up 2.4 years but with some patients over 7 years
- ANCA declined more rapidly then IgG, A or M
- Hypogammaglobulinemia developed mainly in those who entered maintenance with a median IgG of 448 mg/dL
- Infections were 0.85/10 patient years
- Risk of infection related to age and IgG <400 mg/dL
- It appears rituximab can be given long-term safely

Alberici et al, Rheumatol, 2015; Cortazar et al, Arth Rheumatol, 2016

Predicting Relapse by Increasing ANCA Titers

Study

- 166 patients •
- Followed 49±33 months
- ANCA rises occurred an average of 20±17 months after last disease activity
- Half the relapses occurred within 18 months of **ANCA** rise
- All patients who became ANCA negative had an ANCA rise before a major relapse
- Fewer than half the patients with an ANCA rise relapsed within a year of the rise
 - A meta-analysis of the ability of a rising ANCA titer to predict disease relapse
 - Overall a modest effect with a likelihood ratio of 2.84
 - Studies with higher proportion ٠ of patients with kidney disease or other severe manifestations had higher likelihood ratios

Predicting Relapse by Return of B Cells

 In many studies using rituximab for AAV, patients do not experience a relapse unless B cells have returned

Relapse rate in the Rituximab group stratified on the basis of B cell return

- One study found that the type of B cells at reconstitution was important
- Low CD5+ B cells, a surrogate for B regulatory cells was associated with relapse with a HR=3.7, P<0.01 after adjusting for PR3-ANCA and upper respiratory involvement
- Similarly, relapse rates were lower if more naïve B cells are present at reconstitution; it has been speculated that B regulatory cells are in the naïve population

3 Jones et al, Ann Rheum Dis, 2015; Bunch et al, Ann Rheum Dis, 2015; Yusof et al, Ann Rheum Dis, 2015

Clinical Interpretation-Biomarkers of Relapse

- If a patient becomes ANCA negative and remains negative, risk of relapse is low
- An ANCA rise in a patient with AAV and renal involvement should put physicians on alert that a relapse may occur
- May not be worth measuring serial ANCA levels in non-renals
- In rituximab-treated patients relapse rate is low in the absence of a return of B cells
- In rituximab-treated patients relapses may be higher if B cells return, but there are fewer regulatory B cells
- A rise in ANCA or a return of B cells (in a rituximab-treated patient) does not mean pre-emptive treatment should be initiated, but rather patients should be followed carefully because they could relapse