Immunobiology of Immunosuppressant Agents
(2003)

J. Harold Helderman, M.D.

Vanderbilt University School of Medicine
Fig. 1.7 Dr J.E. Murray, Dr J.P. Merrill and Dr J.H. Harkins, who successfully carried out renal transplantation between this set of identical twins on 25 December 1964.
Renal Transplant in the 20th Century

A History of Immunosuppressive Drugs

<table>
<thead>
<tr>
<th>Era</th>
<th>Period</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era 1</td>
<td>1953-63</td>
<td>The Experimental Period</td>
</tr>
<tr>
<td>Era 3</td>
<td>1983-93</td>
<td>The Cyclosporine A Era—Marked Improvement in Early Graft Survival, All Organs Are Not Clinically Transplantable, Chronic Rejection Remains a Problem</td>
</tr>
<tr>
<td>Era 4</td>
<td>1993-?</td>
<td>The Designer Drug Era—Knowledge of Transplant Immunology Allows Grafting of New Agents</td>
</tr>
</tbody>
</table>
Laws of Transplantation

Prehn & Main, 1958

Isograft + Allograft -

A + B A+B

134/137 F₁ F₂
HUMAN MHC COMPLEX

Class II

Class III

Class I
IMMUNOSUPPRESSANTS
Antimetabolites - Azathioprine, Mycophenolate Mofetil, Brequinar
Nonselective Action of Azathioprine

IMP → IMPDH → thio-XMP → thio-GMP
IMP → IMPDH → thio-IMP

Results:
- 5'-phosphoribosylamine ↓
- XMP ↓ PRPP ↑ AMP ↑
- thio-dGTP incorporated into DNA ↑
 - DNA strand breaks
 - delayed cytotoxicity
Selective, Noncompetitive Inhibition of IMPDH by Mycophenolic Acid

MPA inhibition of inosine monophosphate dehydrogenase (IMPDH)

Depletion of dGTP; excess AMP, ADP, dATP

Glycoprotein Synthesis

Inhibition of ribonucleotide reductase
PRPP synthetase

Depletion of deoxyribonucleotide triphosphates

DNA Polymerase

DNA
Mycophenolate Mofetil

A

Lymphocyte

Guanine

HGPRTase

ribose-5P + ATP

PRPP Synthetase

PRPP

IMP

IMPDH

DNA RNA

salvage
de novo

B

Parenchymal Cell

Guanine

HGPRTase

ribose-5P + ATP

PRPP Synthetase

PRPP

IMP

IMPDH

DNA RNA

salvage
de novo

GMP
Immunophyllin Binding Agents

1. Cyclosporines (Sandimmune and Neoral)
2. Tacrolimus (FK506, Prograf)
3. Sirolimus (Rapamycin)
Cyclic undeca-peptide cyclosporin A (CSA)
(a) NF-ATp → NF-Atp-Fos-Jun → NF-Atp-Fos-Jun

Rapid dissociation rate (<2 min)
Slow dissociation rate (>20 min)

(b) Distal murine NF-AT site

GCCCCAAGAGGAAAATTTGTTTCATACAG

Anjana Rao, Immunology Today 1994:15

Vanderbilt Transplant Center
Rapamycin

[Chemical structure image]
RAPAMUNE® (sirolimus) inhibits IL-2–mediated cell proliferation without altering IL-2–activated apoptosis.
Mechanism of Action of Rapamycin

Growth factor receptor (e.g. IL2R)

PTK

PL2 kinase

Rapamycin

FKBP

Target

p70 S6 kinase

cdk/cyclin D1 association

cell cycle progression

cyclin A production
p34^{cdc2} kinase activity
p33^{cdc2} kinase activity

Probable downstream substrates of rapamycin target

nucleus

plasma membrane

Ras, GDP-GTP exchange

Ras, GTP

H₂O

m-Sos

GTP

Raf-1

MapKK

MapK

S6, Gyr-2

GTP

PI₃ kinase

Growth factor receptor

IL2R
RAPAMUNE® (sirolimus) Has a Distinct Mechanism of Action

<table>
<thead>
<tr>
<th></th>
<th>Cyclosporine</th>
<th>RAPAMUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding protein</td>
<td>Cyclophilin</td>
<td>FKB1P12</td>
</tr>
<tr>
<td>Effector protein</td>
<td>Calcineurin</td>
<td>mTOR</td>
</tr>
<tr>
<td>IL-2 message</td>
<td>Inhibited</td>
<td>–</td>
</tr>
<tr>
<td>IL-2 response</td>
<td>–</td>
<td>Inhibited</td>
</tr>
<tr>
<td>Cell-cycle effect</td>
<td>G₀-G₁</td>
<td>G₁-S</td>
</tr>
</tbody>
</table>

Polyclonal Anti-T-Cell Antibodies

Complement-Dependent Lysis

FC-Receptor-Mediated Cell Lysis
Specificities in Antibody Preparations

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Antigen Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATGAM</td>
<td>CD2, CD3, CD4, CD5, CD7</td>
</tr>
<tr>
<td></td>
<td>CD8, CD11α, CD18,</td>
</tr>
<tr>
<td></td>
<td>CD45, TCR</td>
</tr>
<tr>
<td>OKT3</td>
<td>CD3</td>
</tr>
<tr>
<td>OKT4</td>
<td>CD4</td>
</tr>
<tr>
<td>ENLIMOMAB</td>
<td>ICAM-1</td>
</tr>
<tr>
<td>T10 B9</td>
<td>TCR</td>
</tr>
<tr>
<td>ANTI LFA-1</td>
<td>LFA-1</td>
</tr>
<tr>
<td>ANTI-TAC</td>
<td>IL2 Receptor</td>
</tr>
</tbody>
</table>

Source: Bourdage JS, Hamlin DM. Comparative polyclonal antithymocyte globulin and antilymphocyte/antilymphoblast globulin anti-cd antigen analysis by flow cytometry. Transplantation. April 27, 1995; 59(8).
Monoclonal Anti-CD3 Antibodies
Opsonization

T Cell

CD3
αCD3
φ

FC

TCR

Mφ

FC Reception

αCD3

TCR

Mφ

Cell
IL-2 RECEPTOR ANTIBODIES

1. TARGET: NONCONSTITUTIVE IL-2R, MOSTLY β CHAIN
2. IN ANIMALS HIGHLY CYTOTOXIC AND PROLONGS GRAFTS
3. IN MAN MODULATES RECEPTOR
4. FRENCH STUDY: AS INDUCTION AGENT
 a. FEWER SIDE EFFECTS THAN P ON T CELL AB
 b. GRAFT SURVIVAL THE SAME
 c. TREND FOR MORE REJECTIONS
Murine and Humanized Monoclonal Antibodies

Variable Region

Fc Region

M = Murine

H = Human

Murine Antibody

Chimeric Murine-Human Antibody

Humanized Antibody
RECOMBINANT MONOCLONAL ANTIBODIES

Mouse

Human

Chimeric

Humanized
FTY 720
Potential Advantages

- Unique Action – Alteration of Lymphocyte Traffic
- Synergy With Calcineurin Inhibitors and Sirolimus Permitting Dose Reductions
- Side Effects Are Not Additive to Other I.S. Drugs
- Once Daily Dosing
- Minimal Drug-Drug Interactions
- Low Intra-subject Pharmacologic Variability

Vanderbilt Transplant Center
FTY 720

- Immunosuppressive *In Vitro*
- Depletes T and B cells from peripheral blood
- Increases Lymphocyte homing to mesenteric nodes and Peyer’s patches

Vanderbilt Transplant Center
POSSIBLE SITES OF ACTION IN T CELLS OF NEW XENOBIOTIC IMMUNOSUPPRESSANTS

Ca²⁺-DEPENDENT
LIGANDS
TCR-CD3 + CD4/CD8
CD2 LFA-1

Ca²⁺-INDEPENDENT
LIGAND + CD28

Cytokines
IL-2

CsA
FK506

RPM
MZR
MPA
BQR

DSG

G₀ → G₁ → LFM → S → G₂ → M

R.Morris '94