Szervusz! [hi]everybody!
Renal Injury due to Monoclonal Gammopathy
Maria M. Picken MD, PhD

mpicken@luc.edu
MMPicken@aol.com
Objectives

On completion of this activity, the participant should be able to:
1. contrast and compare the clinical features & kidney biopsy findings of amyloidosis and light chain deposition disease
2. contrast and compare the clinical features & kidney biopsy findings with different fibrillary deposits
3. contrast and compare the clinical features & kidney biopsy findings with monoclonal versus polyclonal non-organized deposits
4. contrast and compare the clinical features and kidney biopsy findings direct versus indirect injury by monoclonal proteins
5. contrast and compare the clinical features and kidney biopsy findings in distal versus proximal nephron injury
6. explain the rationale for pathogenetic classification of kidney diseases

Disclosure:
- nothing to disclose
Outline:
1. Definitions, laboratory tests
2. Glomerular/vascular injury
3. Direct versus indirect injury
4. Tubulo-interstitial injury
5. Summary
Monoclonal gammopathies:

- wide spectrum of related diseases
- immunoglobulins aka paraproteins, aka “M-component”
- clonal plasma cells or B lymphocytes

Immunoglobulins:
- produced in response to antigens
- each B cell produces a single species of antibody with unique antigen binding site

Naïve or memory cell:
- activation by exposure to antigen matching its surface receptor
- proliferation (T helper cell)
- differentiation into an antibody-secreting effector cell

- effector B cells begins secreting antibodies
- differentiate into plasma cells
Diagrammatic representation of the IgG molecule. Dark blue = heavy chain constant region (CH1, CH2, CH3); dark green = light chain constant region; light blue = heavy chain variable region; light green = light chain variable region

Paraprotein
aka monoclonal M-protein:

-intact immunoglobulin
-light chain only
-heavy chain only

IgG γ, monomer
IgM μ, pentamer
IgA α, dimer(secretion), monomer (serum)
IgE ε
IgD δ
λ
κ
κ/λ = 2:1

Paraprotein
aka monoclonal M-protein:

-intact immunoglobulin
-light chain only
-heavy chain only
NORMAL SERUM: gamma fraction exhibit a smooth Gaussian distribution indicating a polyclonal distribution

MONOCLONAL IgG: gamma fraction exhibit a discrete band indicating a monoclonal protein
Serum free light chain assay (FLC)

IgG intact molecule (left) and free light chains (right). The hidden surfaces of the light chains (red) are tightly bound to the heavy chains by noncovalent interactions. In free light chain which are no longer bound to heavy chain, these surfaces provide the specific targets for the FLC antisera.

Bradwell, A.R. Serum Free Light Chain Analysis, 5th ed. [7]

Hevylite® assay (HLC) targets junctional epitopes between the κ or λ LCs and heavy chains to provide quantification of intact HLC pairs. This test separately measures serum IgGκ, IgGλ, IgAκ, IgAλ, IgMκ, and IgMλ concentrations. Calculation of the ratio between individual HLC isotype pairs, e.g. IgGκ/IgGλ (HLCr), allows identification of clonal disease in the same manner as FLCr.
Sensitivity of the current diagnostic tests improved but NOT 100%!!!

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLC κ/λ ratio</td>
<td>91%</td>
</tr>
<tr>
<td>Serum IFE</td>
<td>69%</td>
</tr>
<tr>
<td>Urine IFE</td>
<td>83%</td>
</tr>
<tr>
<td>FLC κ/λ ratio and urine IFE</td>
<td>91%</td>
</tr>
<tr>
<td>FLC κ/λ ratio and serum IFE</td>
<td>99%</td>
</tr>
<tr>
<td>Serum IFE and Urine IFE</td>
<td>95%</td>
</tr>
<tr>
<td>All 3 tests</td>
<td>99%</td>
</tr>
</tbody>
</table>

SFLchains:
- much shorter half-life in the circulation than intact immunoglobulins
- monitoring of responses to chemotherapy
- in renal insufficiency ratio of κ/λ useful

Sensitivity of different diagnostic tests and their combinations in 110 patients with AL amyloidosis at the time of disease diagnosis. Bradwell, A.R. Serum Free Light Chain Analysis, fifth ed. [7].
Simplified classification of the Plasma Cell Dyscrasias

<table>
<thead>
<tr>
<th></th>
<th>Multiple Myeloma</th>
<th>Smoldering Myeloma</th>
<th>MGUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow monoclonal plasma cells</td>
<td>≥10%</td>
<td>≥10%</td>
<td><10%</td>
</tr>
<tr>
<td>Monoclonal protein serum and/or urine</td>
<td>≥30g/L</td>
<td>≥30g/L</td>
<td><3.0g/L</td>
</tr>
<tr>
<td>hypercalcemia</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>renal insufficiency</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>anemia</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bone lesions</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Simplified classification of the Plasma Cell Dyscrasias

<table>
<thead>
<tr>
<th></th>
<th>Multiple Myeloma</th>
<th>Smoldering Myeloma</th>
<th>MGUS</th>
<th>MG RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow monoclonal plasma cells</td>
<td>≥10%</td>
<td>≥10%</td>
<td><10%</td>
<td><10%</td>
</tr>
<tr>
<td>Monoclonal protein serum and/or urine</td>
<td>≥30g/L</td>
<td>≥30g/L</td>
<td><3.0g/L</td>
<td><3.0g/L</td>
</tr>
<tr>
<td>hypercalcemia</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>renal insufficiency</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>anemia</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bone lesions</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Distribution of plasma cell disorders in clinical practice

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGUS</td>
<td>61%</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>17%</td>
</tr>
<tr>
<td>AL amyloidosis</td>
<td>9%</td>
</tr>
<tr>
<td>Smoldering myeloma</td>
<td>4%</td>
</tr>
<tr>
<td>Lymphoproliferative disease</td>
<td>3%</td>
</tr>
<tr>
<td>Solitary or extramedullary plasmacytoma</td>
<td>2%</td>
</tr>
<tr>
<td>Macroglobulinemia</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
</tr>
</tbody>
</table>

From the Mayo Clinic Dysproteinemia data base, 1960-2003; n=31,479 [adapted from 6]
MGUS:
- progression to malignancy/overt lymphoproliferative disorder
- progression to MGRS
- no progression

MGUS: IgM versus non-IgM
- IgM \rightarrow Waldenström macroglobulinemia
- non-IgM \rightarrow multiple myeloma
- light chain \rightarrow multiple myeloma

MGRS:
- renal insufficiency/proteinuria
- monoclonal deposits in the kidney or indirect kidney injury
B-cell neoplasia M-component related diseases

Clone size

Clinical manifestations due to clone:
- bone lesions
- hypercalcemia
- infections
- anemia
- systemic symptoms

Clinical manifestations due to M-protein:
- light chain cast nephropathy
- hyperviscosity

Progression - rare

Advances in treatment:
- chemotherapy/stem cell transplantation
- immunomodulatory drugs
- antibodies...

AL, LCDD, non-organized deposits with end-organ damage:
kidney, heart, liver failure, polyneuropathy, other

clone size

none
Light Chain Proximal Tubulopathy

Light chains filtered
Proximal convoluted tubule

Glomerulus

Distal tubule

Light Chain Cast Nephropathy
Systematic approach to kidney evaluation:

- location of paraproteins:
 1. glomerular/intravascular
 2. tubulo-interstitial
 3. other – indirect injury

- correlation with immunofluorescence[IF]/immunohistochemistry[IHC]: clonality
- correlation with electron microscopy [EM]: organized versus non-organized deposits
- defining features by IF, by EM or both
- clinical correlation

Pathomechanism: direct versus indirect paraprotein induced injury
Amyloidosis defining feature =
Congo red stain birefringence under polarized light

Immuno (IF/IHC) stains are variable depending on amyloid type

Light microscopy variable depending on disease stage

Electron microscopy [insert] = supportive by showing characteristic fibrils but not required if Congo red stain is diagnostic

Picken MM, 2015 [9]
Clinical: proteinuria/nephrotic syndrome
LM - mesangial expansion:
- diabetes
- amyloidosis, LCDD

Proteinuria/nephrotic syndrome
LM - normal/almost normal glomeruli: **THINK EARLY STAGE!!!**
- minimal change disease/Focal & segmental glomerular sclerosis
- membranous nephropathy
- diabetes
- early lupus
- amyloidosis, LCDD...

Light microscopy [LM] = neither sensitive nor specific

Picken MM 2014 [1]
AL = amyloidosis derived from immunoglobulin light chain:
- the most common type of systemic amyloidosis
- amyloid type diagnosed by demonstration of light chain restriction by immune stains

AH = amyloidosis derived from Immunoglobulin heavy chain (rare)

Kidney 70%: nephrotic syndrome, renal failure; heart 70%

Picken MM 2014 [1]
Electron microscopy – differential diagnosis of fibrillary deposits:

Amyloid: fibrils ~ 8-10 nm in thickness haphazardly arranged, straight fibrils,

Fibrillary GN: fibrils ~ 20-30 nm in thickness haphazardly arranged, straight fibrils,

Immunotactoid GN: microtubules >30 nm in diameter, focal parallel alignment

Fibrillary GN: rare (0.5-1%)
Proteinuria, hematuria, renal insufficiency, HTN mesangium, glomerular basement membranes, or both
IF: polyclonal IgG and complement
Common: underlying malignancy, some - dysproteinemia, or autoimmune diseases
Prognosis poor, rare remission without immunosuppressive therapy Nasr et al [11]

Immunotactoid GN: 10-fold rarer than fibrillary GN deposits usually monoclonal overlap with cryoglobulinemic GN?
IGN and cryoglobulinemic nephropathy = part of the spectrum of renal manifestations in patients with circulating cryoglobulins?
Cryoglobulins:

– proteins that become insoluble at reduced temperatures

Type I = 10-15%, multiple myeloma, Waldenström macroglobulinemia
 - monoclonal paraprotein
Types II = 50-60%
 - immune complexes: monoclonal IgM-polyclonal IgG or IgA (RF function)

Type III = 25-30%, SLE, rheumatoid arthritis
 - polyclonal IgM and IgG
IF: IgG-κ
EM: organized deposits
(may be focal)
courtesy of Michael Mihatsch
LM: membranoproliferative pattern of injury
Organized deposits: amyloidosis, fibrillary, immunotactoid and cryoglobulineminic

<table>
<thead>
<tr>
<th>deposits</th>
<th>location</th>
<th>Congo red</th>
<th>paraprotein</th>
<th>diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>fibrils 8-10 nm in thickness</td>
<td>extracellular</td>
<td>(+)</td>
<td>AL/AH-100% non-AL/AH: 0%</td>
<td>amyloidosis</td>
</tr>
<tr>
<td>fibrils 20-30 nm in thickness</td>
<td>extracellular</td>
<td>(-)</td>
<td>some</td>
<td>fibrillary glomerulonephritis</td>
</tr>
<tr>
<td>microtubules >30 nm in diameter</td>
<td>extracellular</td>
<td>(-)</td>
<td>usually</td>
<td>immunotactoid glomerulonephritis</td>
</tr>
<tr>
<td>microtubules, curvilinear, annular-tubular structures, and fingerprints, focal</td>
<td>Extracellular subendothelial & intraluminal</td>
<td>(-)</td>
<td>100% 0%</td>
<td>Cryoglobulin type I, II Type III</td>
</tr>
</tbody>
</table>
Waldenström's macroglobulinemia aka lymphoplasmacytic lymphoma

clinicopathologic entity:
- bone marrow lymphoplasmacytic lymphoma + IgM monoclonal gammopathy
- anemia, hyperviscosity, lymphadenopathy, hepatomegaly or splenomegaly

Other pathologies:
- Bence Jones proteinuria 40%, > 1 g/d 3%
- cryoglobulins 20%
- AL

rare, 1-2% of hematologic cancers, US: ~ 1,500/year
"indolent lymphoma", incurable but treatable
Waldenström macroglobulinemia
IF: IgM-κ glomerular capillaries + intracapillary thrombi
Crystalglobulinemia: intravascular crystals
- very rare
- pathomechanism not clear: crystallization of monoclonal proteins in the systemic vasculature with vascular injury, thrombosis, and occlusion

Crystalline nephropathy – differential diagnosis:

<table>
<thead>
<tr>
<th>(A) non-paraprotein crystals</th>
<th>(B) paraprotein crystals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- nephrocalcinosis and oxalate nephropathy, most common</td>
<td>- intracellular crystals:</td>
</tr>
<tr>
<td>- urate nephropathy, cystinosis, dihydroxyadeninuria, less frequent</td>
<td>light chain proximal tubulopathy/crystal-storing histiocytosis</td>
</tr>
<tr>
<td>- drug-induced crystalline nephropathy (indinavir, triamterene)</td>
<td>- intratubular crystals, rare [12]</td>
</tr>
<tr>
<td></td>
<td>- Intravascular, very rare [12, 13]</td>
</tr>
</tbody>
</table>
Differential diagnosis of intracapillary paraprotein:
- cryoglobulinemia,
- Waldenström macroglobulinemia,
- crystalglobulinemia

SKIN FREQUENTLY INVOLVED

Monoclonal gammopathy of cutaneous significance
D. Lipsker, 2016 [16]

Journal of the European Academy of Dermatology and Venereology
8 AUG 2016 DOI: 10.1111/jdv.13847 [14]
Monoclonal Immunoglobulin deposition Disease[MIDD]:

Light Chain Deposition Disease (LCDD), most common
Light/Heavy chain Deposition Disease, rare
Heavy Chain Deposition Disease, rare

Defining feature = immunostain with characteristic pattern of distribution

LCDD-κ>LCDD-λ
Light chain deposition disease (LCDD)
- IF monoclonal deposits along basement membranes
- Congo red (-)
- EM - powdery

- Clinical:
 - proteinuria/nephrotic s.

Picken MM [1]
MIDD: LCDD, HCDD, LHCDD
- monoclonal deposits along basement membranes
- Congo red (-)
- EM: non-fibrillary, powdery
- Light microscopy = variable!!!

May be associated with other paraprotein pathologies

Picken MM 2014 [1]
Nasr et al 2009 [15]
Glomerulonephritis with non-organized deposits
immune complex-like

LM variable: proliferative (MPGN), membranous

IF: IgG3-kappa

EM: immune complex-like deposits

Abundant, large, granular electron-dense mesangial and subendothelial deposits.

Abundant, medium-sized, granular electron-dense subepithelial and intramembranous deposits.

Samih H. Nasr et al. JASN 2009;20:2055-2064 [16]
C3 Glomerulonephritis
- proliferative glomerulonephritis
- IF: C3 and no immunoglobulins
- EM: electron dense deposits, non-organized, immune-complex-like

Pathomechanism: dysregulation of the alternative pathway of complement

Dysregulation of the alternative pathway of complement - C3 glomerulopathies:
C3 glomerulonephritis & Dense Deposit Disease
- mutations
- functional inhibition of regulating proteins
- functional inhibition of regulating proteins by a monoclonal gammopathy

= indirect paraprotein induced injury

Bridoux et al, CJASN 2011 [17]
Evolution of classification of membranoproliferative pattern of glomerular injury towards pathogenetic classification

Membranoproliferative glomerulonephritis:

- IgG + C3
- Ig(-) C3 (+)

Ig-mediated

- IgG + C3
- Ig(-) C3 (+)

Complement mediated

- IgG + C3
- Ig(-) C3 (+)

Monoclonal M-component-mediated direct mechanism

Monoclonal M-component-mediated indirect mechanism

Polyclonal infections

Autoimmune mutation

Sethi et al [18, 19]
Monoclonal gammopathy is an important cause of membranoproliferative glomerulonephritis (MPGN):

all (adult) patients with MPGN should be evaluated for an underlying monoclonal gammopathy
Don't forget to examine the tubules and the interstitium!!!
Distal tubules – intratubular light chain light chain cast nephropathy:
- thick ascending loop of Henle
- acute or chronic renal failure
- large amount of monoclonal free light chains
- affinity between light chains with uromodulin (Tam Horsfall protein)
- “brittle” casts with cracks, weakly PAS (+),
 - cellular reaction
 - inflammation, fibrosis

Picken MM 2014 [1]
Picken MM 2014 [1]
- light chains casts = weakly PAS positive
- cellular reaction around casts
Differential Diagnosis:
early light chain cast nephropathy versus Interstitial nephritis
LCPT: Light Chain Proximal Tubulopathy with crystals

Intracellular organized

Clinical: slowly progressing renal failure with/without Fanconi syndrome, complete or partial (glucose, amino acids, uric acid, phosphate, and bicarbonate)

Recurrence in kidney Transplant!!! [20, 21]
CSH: Crystal Storing Histiocytosis: kidney, systemic [21], [22]
Light Chain Proximal Tubulopathy – non-crystalline
Intracellular non-organized
More common than crystalline!!! [20]
Amyloid Inclusions

Interstitial Infiltrate

Slide courtesy of Chris Larsen
Intracellular monoclonal immunoglobulin:
1. Crystalline
2. Non-crystalline
3. Fibrillar
Interstitial infiltrate – differential diagnosis:
interstitial nephritis versus underlying plasma cell dysplasia versus monoclonal infiltrate
Beware of “interstitial nephritis” masking underlying PCD!
Monoclonal infiltrates – demonstration of light chain restriction by immunohistochemistry: left positivity for κ while stain for λ (right) shows rare positive cells
Interstitial nephritis – differential diagnosis
pathogenetic classification

- Drugs – hypersensitivity reaction
- Infections (bacterial, viral)
- Autoimmune/immune (allograft)
- IgG4

PCD/B-cell
Lymphoproliferative disorder
Conclusions:
Morphologic pattern of injury versus *pathogenetic classification*
Importance of immunofluorescence and electron microscopy
Light microscopy frequently shows overlapping morphologies and is not specific
Light microscopy - importance for prognosis
>1 pattern of injury
Clinical correlation, overlapping features clinically
Some MGRS entities may be rather indolent but ultimately lead to renal failure,
recur in kidney transplants
Focus on early diagnosis
Comprehensive evaluation
Thank you

Questions?
mpicken@luc.edu
MMPicken@aol.com
Selected references:

22. Stokes MB et al. Dysproteinemia-related nephropathy associated with crystal-storing histiocytosis. KI 2006; 70:597-602
